
Review on ODEs

First order linear equations.
Let us consider the initial value problem{

y′(t) = f(t)y(t) + g(t) ,
y(0) = y0 ,

where f, g : (0,∞) → R are given functions. Then, the unique solution of the above
problem is given by

y(t) := y0e
∫ t
0 f(s) ds +

∫ t

0
g(s)e

∫ t
s f(τ) dτ ds .

Second order homogeneous linear equations with constant coefficients.
Let us consider the initial value problem ay′′(t) + by′(t) + cy(t) = 0

y(0) = y0 ,
y′(0) = y1 ,

(1)

for some a, b, c, y0, y1 ∈ R. The theory of ODEs tells us that the set of solutions of

ay′′(t) + by′(t) + cy(t) = 0 , (2)

is a vector space of dimension 2. Thus, if v1 and v2 are two linearly independent solutions
of (2), then the general solution of (2) is of the form

y(t) = c1v1(t) + c2v2(t) ,

for some constants c1, c2 ∈ R. So, once we find such a base of the vector space of the
solutions of (2), we know the general form of the solution. Then, by using the initial
conditions, we can find the solution of (1) (since the solution of (1) is unique!).

The idea in order to solve the above problem is the following: let us find solutions of
the form

y(y) = eµt , (3)

for some µ ∈ R that we have to determine. If we plug in the above form of u in the
equation (2), we obtain

eµt
(
aµ2 + bµ+ c

)
= 0 .

Thus, we consider the so called characteristic polynomial

aµ2 + bµ+ c = 0 . (4)

We have that: the function u in (3) solves the equation (2) if and only if µ is a solution
of the characteristic polynomial (4). Then, the general solution will be of the form

y(t) = c1e
µ1t + c2e

µ2t , (5)

where µ1 6= µ2 are the two distinct solutions of (4), or

y(t) = c1e
µ1t + c2te

µ1t , (6)

in the case they coincide. Notice that µ1 and µ2 can also be complex numbers. So:

(i) if µ1 6= µ2 and they are real numbers, then the general solution is given by

y(t) = c1e
µ1t + c2e

µ1t ,

or, equivalently by

y(t) = c1 cosh(µ1t) + c2 sinh(µ1t) ,



(ii) if µ1 = µ2 (and, of course, they are both real!), then the general solution is given
by

y(t) = c1e
µ1t + c2te

µ1t ,

(iii) if the solution of (4) is of the form

α± i
√
β ,

for some α, β ∈ R, then the general solution of (2) is given by

y(t) = eαt
[
c1 cos(

√
βt) + c2 sin(

√
βt)
]
.

Finally, by using the initial conditions, we can find the values of c1 and c2 for which
the function u above is a solution of (1).

General second order linear equations - variation of coefficients.
We now want to solve the problem y′′(t) + b(t)y′(t) + c(t)y(t) = f(t) ,

y(0) = y0 ,
y′(0) = y1 ,

(7)

where b, c and f are given functions. Notice that the coefficient in from of y′′ is 1.
The idea to find the solution of (7) is the following: let y1 and y2 be a base for the

space of solutions of the homogeneous problem

y′′(t) + b(t)y′(t) + c(t)y(t) = 0 . (8)

Notice that we have, in general, no clue how to find y1 and y2. But let us assume that
we know them. Then, we would like to find solutions of the equation

y′′(t) + b(t)y′(t) + c(t)y(t) = f(t) (9)

of the form
y(t) = λ1(t)y1(t) + λ2(t)y2(t) , (10)

where λ1 and λ2 are functions that we have to find. For such a function y, we have that

y′ = λ′1y1 + λ1y
′
1 + λ′2y2 + λ2y

′
2 .

Since we know nothing about the functions λ1 and λ2, we impose that

λ′1y1 + λ′2y2 = 0 .

Then, we obtain
y′ = λ1y

′
1 + λ2y

′
2 ,

and
y′′ = λ′1y

′
1 + λ1y

′′
1 + λ′2y

′
2 λ2y

′′
2 .

Then, in order for the function y as in (10) to solve the equation (9), we need to impose
(after a bit of rearrangement)

λ1
(
y′′1(t) + b(t)y′1(t) + c(t)y1(t)

)
+λ2

(
y′′2(t) + b(t)y′2(t) + c(t)y2(t)

)
+λ′1y

′
1+λ

′
2y
′
2 = f(t) .

since y1 and y2 are solutions of (8), we have that the first two terms in the above equality
are zero. Thus, we need λ1 and λ2 to satisfy λ′1y1 + λ′2y2 = 0 ,

λ′1y
′
1 + λ′2y

′
2 = f(t) .

Let us recall that, since y1 and y2 are linearly independent, we have that

y1(s)y
′
2(s)− y2(s)y′1(s) 6= 0 ,

for every s (in technical terms, the Wronskian never vanishes).



Thus, we obtain

λ1 = λ1(0)−
∫ t

0

y2(s)

y1(s)y′2(s)− y2(s)y′1(s)
f(s) ds ,

and

λ2 = λ2(0) +

∫ t

0

y1(s)

y1(s)y′2(s)− y2(s)y′1(s)
f(s) ds .

Finally, in order to find the values of λ1(0) and λ2(0), we use the initial conditions for
y. Thus, we obtain the solution of problem (7) as

y(t) = λ1(t)y1(t) + λ2(t)y2(t) ,

where λ1 and λ2 are as above.

Separation of variables technique.
In order to solve a differential equation of the form

y′(t) = f(y)g(t) , (11)

we perform the following steps (they are only a mnemonic way to remember how to
solve it. There is a solid theory behind that justifies all we are going to do!):

(i) separate the variables
dy

f(y)
= g(t)dt ,

(ii) integrate both sides ∫
dy

f(y)
=

∫
g(t)dt ,

(iii) we obtain something like

F (y) = G(t) .

In theory the function F is (locally) invertible where f 6= 0. If we are able to
invert it explicitly, then we can find the solution of (11) as

y(y) = F−1 (G(t)) .

If we also have to incorporate the initial condition, we write G(t) + k in step (iii) above,
for some constant k that will be determined by means of the initial condition.


